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Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field
in the electron cloud have been obtained for closed-shell systems BeH-, BH, and CH+, characterized by
induced orbital paramagnetism, and in planar unsaturated hydrocarbons C4H4 and clamped C8H8, exhibiting
π paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to
magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory
approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the
current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as
a sum of two formally “diamagnetic” terms for any molecule, including systems showing strong induced
orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal
topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at
the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding
first-order orbital.

1. Introduction

Diamagnetism is defined as a property “characteristic of
materials that line up at right angles to a nonuniform magnetic
field and that partly expel from their interior the magnetic
field in which they are placed”.1 Such a behavior was first
observed (1778) by S. J. Brugmans of Leyden University in
bismuth and by Le Baillif (1827) in antimony; see p 144 of
Light and Electricity by John Tyndall.2 However, the term
“diamagnetism” was coined by Michael Faraday, who started
studying it systematically in 1845 and discovered that all
substances in nature exhibit some form of diamagnetic
response to an applied magnetic field.

Diamagnetism is independent of temperature, and it is typical
of elements and compounds that possess complete sets of
valence electrons, referred to as shells, in which all their
electrons are paired. Since two paired electrons have opposite
spins, the magnetic field generated by each spinning electron
is canceled out by the magnetic field of the other. When such
a species with closed electron shells is placed in a magnetic
field, it is repelled. However, the response of some substances
to the magnetic perturbation is just the opposite, that is,
paramagnetic.

Paramagnetism is characteristic of materials attracted by a
strong magnet. It generally occurs in elements or compounds
possessing unpaired, singly orbiting electrons, whose motion
generates a magnetic field. Such substances behave as a
permanent magnet, for example, if placed in a magnetic field,
their intrinsic field aligns with, and hence strengthen, the applied
magnetic field. Paramagnetism decreases with rising temperature
because alignment is partially lost due to the greater random
motion of the elementary magnets. However, temperature-

independent weak paramagnetism is observed in many metallic
elements in the solid state, such as sodium and the other alkali
metals.

Quite remarkably, temperature-independent paramagnetism
has also been predicted for closed-shell diatomic molecules with
six valence electrons, boron monohydride BH,3-18 the CH+

cation,15,17,18 and the BeH- anion.17,18 Paramagnetic contributions
to the out-of-plane component of the magnetic susceptibility
tensor arise from ring currents sustained by the π electrons in
monocyclic conjugated hydrocarbons, for instance, cyclobuta-
diene C4H4,19,20 and in flattened cyclo-octatetraene (COT) C8H8

annelated with perfluorocyclobuteno moieties21 and with bicy-
clo[2.1.1] hex-2-ene groups.22,23 π-Electron paramagnetism is
also exhibited by polycyclic systems.24,25 Remarkable examples
are corannulene and coronene dianions.26

According to the van Leeuwen’s theorem quoted in Section
24, p 94, of the book by van Vleck,27 the magnetic susceptibili-
ties and the induced magnetic moments vanish when classical
Boltzmann statistics are applied to any dynamical system.28

Therefore, in the words of Feynman, “it is not possible to
understand the magnetic effects of materials in any honest way
from the point of view of classical physics. Magnetic response
is a completely quantum mechanical phenomenon”.29 Possibly,
the need for a quantum mechanical approach is even stronger
to understand paramagnetism in closed-shell molecules. It can
only be explained by a careful analysis of the topology of the
electronic wavefunction, which determines the presence of
paramagnetic vortices about nodal lines.6,30-36 Such a behavior
has been referred to as induced orbital paramagnetism37 by
Riess.6

The main purpose of the present investigation is to add further
evidence on the source of temperature-independent paramagnet-
ism in diatomics, BH, CH+, and BeH-, and of the paratropic
ring currents induced in the π electrons of C4H4 and clamped
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C8H8, by analyzing the topology of magnetic-field induced
current density vector field.

The conventional quantum mechanical partition of mag-
netic quantities into “d” and “p” contributions, currently
referred to as “diamagnetic” and “paramagnetic” within the
framework of perturbative approaches, for example, for the
current density JB ) Jd

B + Jp
B, for the magnetizability, �R� )

�R�
d + �R�

p (using the symbol recommended by IUPAC), and
for the magnetic shielding, σR�

I ) σR�
Id + σR�

Ip at nucleus I, is
discussed in Section 2.

Flygare38 has shown that molecular g factors and magnetiz-
ability in molecules can be combined to obtain a direct
measurement of the ground-state electronic average of the
∑i)1

n ri
2 operator, where ri is referenced to the center of mass

(CM). The molecular g factor is a sum of terms, one depending
on the nuclear position, and a second depending on all the
excited electronic states of the molecule. The magnetizability
is also a sum of term, the first term (diamagnetic susceptibility)
depending on the ground electronic state and the second term
(paramagnetic susceptibility) depending on all the excited
electronic states of the molecule. The excited electronic-state
dependence on the molecular g factor and the diamagnetic
susceptibility is the same. Thus, if one knows the molecular g
factors, the molecular structure, and the average susceptibility,
a term depending on the ground electronic molecular state may
be obtained, that is, the average 〈Ψa

(0)|∑i)1
n ri

2|Ψa
(0)〉. The rotational

magnetic moment and the spin-rotational constants of a molecule
are related respectively to the paramagnetic term of the
susceptibility (gauge origin at CM) and to the paramagnetic term
of the nuclear shieldings (gauge origin on the nucleus in
question).38

However, we emphasize that, in general, the distinction
between diamagnetic and paramagnetic parts of magnetic
tensors is loose and sometimes misleading, since only the
sum of these d and p contributions has a physical meaning.
Moreover, the “paramagnetic” part of the current density JB

may have any direction. It can be either diatropic, that is,
flowing clockwise on planes at right angles to the direction
of the applied field B, or paratropic, that is, anticlockwise.39

Current density vector components parallel or antiparallel
to B exist, and they should be taken into account to fulfill
the continuity condition ∇ · JB ) 0; however, they do not
contribute to the diagonal components of magnetic response tensors.

The erroneous inequality �RR
p < |�RR

d | presented by Guy, Tillieu,
and Baudet (GTB)40 and the Rebane’s method41,42 based on a
gauge transformation that formally kills the paramagnetic �RR

p

contribution to �RR are reviewed in Section 3. Rebane shows
that the GTB inequality40 fails if the electronic wave function
for the reference state possesses nodal surfaces. However, he
claims that the diamagnetic character of the total magnetizability
(that is, the inequality �RR E 0) is proven for the ground state,41

which was shown to be incorrect for closed-shell systems with
more than two electrons.5

On the other hand, as discussed in Section 4, the “paramag-
netic” p contribution to JB perpendicular to B can effectively
be killed for molecules with more than two electrons via the
procedure of continuous transformation of the origin of the
current density-paramagnetic zero (CTOCD-PZ). The “p” parts
of the magnetizability �R� and of the magnetic shielding σR�

I

are also killed.43-45 Furthermore, it is also demonstrated that
the annihilated “paramagnetic” contribution to the current
density is merely transformed into a formally “diamagnetic”
(non-Larmor) term in disguise. Therefore, the JB(r) vector does
not change at any point r, as the total current density is invariant

to the CTOCD-PZ transformation. Total �R� and σR�
I are also

invariant; in particular, they stay the same for typically
paramagnetic species like BH and CH+, after formally annihilat-
ing �R�

p and σR�
Ip . In Section 4 the CTOCD-PZ procedure is

compared with methods based on a gauge transformation which,
like Rebane’s, kill the “paramagnetic” contribution to �RR,5,41,42

providing a simple counter-argument against the erroneous
inequality �RR

p < |�RR
d |.40

Models of current density field constructed via the procedures
discussed in Section 5 are described in Section 6. An explanation
of paramagnetism in closed-shell molecules is provided in
Section 7 allowing for topological methods.6,30-36

2. Diamagnetic and Paramagnetic Contributions to
Magnetic Properties

Within current quantum mechanical theories of magnetic
response, the induced electronic current density,46 the magne-
tizability,27 and nuclear magnetic shieldings47 are expressed as
a sum of two parts, referred to as diamagnetic and paramagnetic
contributions, respectively. These terms are not uniquely defined;
they convert into one another in a gauge transformation of the
vector potential (e.g., in a gauge translation, which is equivalent
to a change of coordinate system), only their sum being
invariant.

Let us consider a closed-shell molecule with n electrons with
position ri, canonical momentum p̂i, and angular momentum l̂i )
ri × p̂i, i ) 1, 2, ..., n, in a spatially uniform magnetic field B )
∇ × A, with vector potential A ) (1/2)B × r in the Coulomb
gauge. SI units are used throughout this paper. The zero-order
Hamiltonian is Ĥ(0) ) T̂ + V̂, with T̂ )-p2/2me∑i)1

n ∇i
2. V̂ contains

electron-nucleus and electron-electron interactions. The unper-
turbed electronic reference state is described by the real wave
function Ψa

(0)(x1, x2, ..., xn), with xi ) riX ηi a space-spin coordinate
and (Ĥ(0) - Ea

(0))Ψa
(0) ) 0.

To first-order in B, the quantum mechanical electronic current
density can be written as a sum of paramagnetic and diamagnetic
contributions,

where

is related to the probability density γ(0) of the unperturbed
molecule. The paramagnetic contribution is given by

introducing the first-order perturbed wave function, an axial
vector with components

where m̂R ) -(e/2me)∑i)1
n l̂iR is the magnetic dipole moment of

electrons.

JB ) Jp
B + Jd

B (1)

Jd
B(r) ) - e2

2me
B × rγ(0)(r) (2)

Jp
B(r) ) -ne

me
∫ dx2 ... dxn ×

[B ·Ψa
B*(r, x2, ..., xn)p̂Ψa

(0)(r, x2, ..., xn) +

Ψa
(0)*(r, x2, ..., xn)p̂B ·Ψa

B(r, x2, ..., xn)] (3)

|Ψa
BR〉 ) 1

p∑
j*a

ωja
-1|Ψj

(0)〉〈Ψj
(0)|m̂R|Ψa

(0)〉 (4)
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The definitions of molecular magnetic properties can be given
in concise form allowing for eqs 1-3. Employing tensor
notation, and the Einstein implicit summation rule over repeated
Greek suffixes, using the Levi-Civita third-rank unit pseudot-
ensor εR�γ and introducing the current density tensor, that is,
the derivative48

the magnetizability and the magnetic shielding at nucleus I, with
position coordinate RI, are expressed as integrals in three-
dimensional space49

Whereas the diatropic rotation of the magnetically induced
Larmor-type current density (eq 2) is always in such a direction
to produce a diamagnetic contribution to the susceptibilitysthe
Langevin-Pauli term27

the “paramagnetic” contribution to the current density (eq 3)
may have any direction. The paramagnetic contribution to the
magnetizability in the van Vleck theory27 is

GTB presented a variational approach to calculate magnetic
susceptibilities �R�,50-53 whereby the sum-over-state formula 9
for �R�

p is replaced by an expectation value over the reference
state, much easier to evaluate. Analogous variational schemes
have later been described and extended to predict nuclear
magnetic shieldings.54-59 In ref 40, GTB reported a proof that
the paramagnetic contribution �RR

p cannot be larger than the
diamagnetic contribution |�RR

d |. Their method is related to that
developed later by Rebane41 reviewed in Section 3, as shown
by Hegstrom and Lipscomb.5

3. Rebane’s Approach

Within Rebane’s approach, the first- and second-order
Hamiltonians are written Ĥ(1) ) (e/2me)∑i)1

n (A · p̂ + p̂ ·A)i

and Ĥ(2) ) (e2/2me
2)∑i)1

n Ai
2, respectively, in an arbitrary gauge

for the vector potential. Since the expectation value
〈Ψa

(0)|Ĥ(1)|Ψa
(0)〉 vanishes, the first-order equation of the

Rayleigh-Schrödinger perturbation theory becomes

The second-order electronic energy of the molecule is

where �R� is the magnetizability tensor (eq 6).
We look for a transformation to Rebane’s gauge,41

whereby Ψa
(0) is annihilated via the operator

assuming that A on the rhs of eq 13 is the vector potential in
the Coulomb gauge, that is, ∇ ·A ) 0. Therefore, in the Rebane’s
gauge, the paramagnetic term of eq 11 vanishes, because

A solution to this equation is found observing that the invariance
of the energy (eq 11) in the gauge transformation (eq 12)
requires a corresponding transformation of the wave function,60,61

We assume that the last term on the rhs of eq 15 gives the first-
order correction to the wave function via the Ansatz

then, the condition 0opΨa
(0) ) 0, eq 14, is fulfilled allowing for

eq 10 and for the zero-order equation (Ĥ(0) - Ea
(0))Ψa

(0) ) 0.
The generating function f has the form5,41

Therefore, within the Rebane’s choice of gauge, the second-
order energy (eq 11) contains only a formally diamagnetic term,
the expectation value

I R
B�(r) )

∂JR
B(r)

∂B�
(5)

�Rδ ) 1
2

εR�γ ∫ r�Iγ
Bδ(r) d3r (6)

σRδ(RI) ≡ σRδ
I ) -

µ0

4π
εR�γ ∫ r� - RI�

|r - RI|
3
Iγ

Bδ(r) d3r

(7)

�R�
d ) - e2

4me
〈Ψa

(0)| ∑
i)1

n

(rγ
2δR� - rRr�)i|Ψa

(0)〉 (8)

�R�
p ) 1

p∑
j*a

2
ωja

R(〈Ψa
(0)|m̂R|Ψj

(0)〉〈Ψj
(0)m̂�|Ψa

(0)〉) (9)

[Ĥ(0) - Ea
(0)]Ψa

(1) + Ĥ(1)Ψa
(0) ) 0 (10)

WBB ) e2

2me
〈Ψa

(0)|∑
i)1

n

Ai
2|Ψa

(0)〉 - e2p2

me
2 ∑

j*a

(Ej
(0) - Ea

(0))-1 ×

|〈Ψa
(0)|∑

i)1

n

(A ·∇ + 1
2

∇ ·A)i|Ψj
(0)〉|2

) -1
2

�R�BRB� (11)

A f AR ) A + ∇f (12)

0op ) ∑
i)1

n

[AR ·∇ + 1
2

∇ ·AR]i
) ∑

i)1

n

[A ·∇ +

(∇f) ·∇ + 1
2

∇2f ]i
(13)

0opΨa
(0) ) ∑

i)1

n

Ai ·∇iΨa
(0) + ∑

i)1

n

(∇i f) ·∇iΨa
(0) +

1
2

Ψa
(0) ∑

i)1

n

∇i
2f ) 0 (14)

Ψa
(0) f Ψa

(0) exp(- ie
p

f) = Ψa
(0) - ie

p
fΨa

(0) (15)

Ψa
(1) ) -∑

j*a

(Ej
(0) - Ea

(0))-1〈Ψj
(0)|Ĥ(1)|Ψa

(0)〉Ψj
(0) ) ie

p
fΨa

(0)

(16)

f ) p
2

me
∑
j*a

(Ej
(0) - Ea

(0))-1〈Ψj
(0)| ∑

i)1

n

(A ·∇)i|Ψa
(0)〉

Ψj
(0)

Ψa
(0)

(17)
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This quadratic form is always positive, so that the trace of the
magnetizability tensor �R� is necessarily negative.

Multiplying eq 14 on the left by f Ψa
(0) and integrating by

parts, an integral “orthogonality condition” for the Rebane’s
gauge,

is obtained, and allowing for relationship 19, the second-order
energy can be rewritten5

The WBB G 0 inequality by GTB40 rests upon the existence
of the Rebane gauge function 17 and of the integrals in eqs
18-20. It is not valid if Ψa

(0), appearing in the denominator of
eq 17, possesses nodal surfaces, and then the Ansatz 16 is to
be rejected for n > 2.5

4. CTOCD-PZ Approach

Whereas the Rebane’s procedure is devised to kill the wave
function Ψa

(0) according to eq 14, the CTOCD-PZ procedure is
based on the alternative idea that the paramagnetic contribution
to the current density (eq 3) can be annihilated at any point r
via a coordinate transformation. Since the total current density
JB ) JB(r) is an invariant vector field, its origin can arbitrarily
be chosen. Therefore, in a change of coordinate system,

the diamagnetic and paramagnetic terms vary in such a way
that JB remains the same,48 that is,

Consistent with eq 22, the change of the diamagnetic contribu-
tion to the current density, eq 2, is obtained by the relation48

where

The corresponding transformation for the paramagnetic contri-
bution reads

where

introducing the perturbed function

The current density terms, eqs 24 and 26, do not depend on the
origin. The constraint for invariance of the total current density
is

This result holds exactly for state functions that are eigenfunctions
to a model Hamiltonian, as can be proven via hypervirial relations.48

In eq 21 the shift of origin is represented by a constant vector
d. The CTOCD-PZ sets out to determine a general transforma-
tion function d ) d(r) formally annihilating the paramagnetic
contribution to the current density for all r.44,45,62 This function
can be evaluated pointwise via the condition determined from
eq 25. The lhs of this equation vanishes for

which yields the 3 × 3 system of linear equations44,45,62

where

and

It is evident from the definition, eq 31, that the matrix M is
singular, which means that complete annihilation of paramag-
netic current is physically impossible: whereas a Larmor
diamagnetic current density is always perpendicular to B, the
component of JB parallel to the magnetic field, a typically
quantum mechanical quantity, does not in general vanish.
However, the perpendicular component is not needed to
calculate magnetic properties, eqs 6 and 7. Therefore, we only
need to solve a 2 × 2 subsystem of eq 30 for each point in real

WBB ) e2

2me
〈Ψa

(0)| ∑
i)1

n

Ai
R ·Ai

R|Ψa
(0)〉 (18)

〈Ψa
(0) | ∑

i)1

n

Ai
R ·∇i f |Ψa

(0)〉 ) 0 (19)

WBB ) e2

2me
〈Ψa

(0)| ∑
i)1

n

(AR ·A)i|Ψa
(0)〉

) e2

2me
〈Ψa

(0)| ∑
i)1

n

(A2 - ∇f · ∇f)i|Ψa
(0)〉 (20)

r′ f r′′ ) r′ + d (21)

JB(r - r′′) ) JB(r - r′) + Jd
(r′′-r′)×B(r) + Jp

(r′′-r′)×B(r)

) JB(r - r′)
≡ JB(r) (22)

Jd
B(r - r′′) ) Jd

B(r - r′) + Jd
(r′′-r′)×B(r) (23)

Jd
(r′′-r′)×B(r) ) - e2

2me
(r′′-r′) × Bγ(0)(r) (24)

Jp
B(r - r′′) ) Jp

B(r - r′) + Jp
(r′′-r′)×B(r) (25)

Jp
(r′′-r′)×B(r) ) -ne

me
∫ dx2 ... dxn ×

[(r′′-r′) × B ·Ψa
(r′′-r′)×B*p̂Ψa

(0) +

Ψa
(0)*p̂(r′′-r′) × B ·Ψa

(r′′-r′)×B] (26)

|Ψa
(r′′-r′)×B〉 ) - e

2mep
∑
j*a

ωja
-1|Ψj

(0)〉〈Ψj
(0)|P̂|Ψa

(0)〉

(27)

Jp
(r′′-r′)×B + Jd

(r′′-r′)×B ) 0 (28)

Jp
B(r - r′) ) -Jp

d×B(r) (29)

Md ) T (30)

Mδ� ) ne
me

εR�γBγ ∫ dx2 ... dxn [Ψa
(d×B)R*p̂δΨa

(0) +

Ψa
(0)*p̂δΨa

(d×B)R] (31)

Tδ ) -ne
me

BR∫ dx2 ... dxn[Ψa
BR*p̂δΨa

(0) + Ψa
(0)*p̂δΨa

BR]

(32)
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space to annihilate the components of the paramagnetic current
on a plane perpendicular to B.

The analytic expression for the function d ) d(r) is not
known in the case of approximate wave function. However, one
can formally define the n-electron operator

having the same expectation value as the position operator RR
) ∑i ) 1

n riR,

This identity is satisfied by optimal variational wave functions.63

Within the CTOCD-PZ scheme the current density contains
one Larmor- and one non-Larmor-type term,

Therefore, the magnetizabilities calculated via eqs 5, 6, and 35
become the sum of two addenda of the same form, the
conventional Langevin-Pauli term (eq 8) and a “diamagnetic”
Π contribution

which reduces to the conventional paramagnetic contribution
(eq 9) of the van Vleck theory if the hypervirial momentum
theorem63 is satisfied.44,62

Defining the operator

for the electric field exerted by an electron with position r on
nucleus I at RI, the paramagnetic CTOCD-PZ contribution to
the magnetic shielding becomes48

This reduces to the Ramsey paramagnetic contribution47

for optimal variational wave functions satisfying the hypervirial
theorems44,62,63 so that

The CTOCD-PZ approach does not provide any criterion to
assess the relative magnitude of �Rδ

d and �Rδ
Π , since both cases,

rR > dR and rR < dR, are possible in eq 35. Therefore, �RR
Π ≡ �RR

p

may be greater than |�RR
d |, as observed for BH and CH +, which

discounts the inequality presented by GTB.40

In general, the CTOCD-PZ and CTOCD-PZ2 methods do
not offer any advantage of reduced computational time.
However, they were found computationally efficient and superior
to conventional common-origin approaches to calculate accurate
nuclear magnetic shieldings via medium-size basis sets.45

From the invariance constraint, eq 28, and eq 29, the identity

is obtained. This relationship does not provide a recipe for
calculating the shift functions in the approximate case but yields
the definition of exact d(r),

It is observed that the ideal killing function, eq 42, is not
defined in the points of the molecular domain at which the
unperturbed probability density γ(0) vanishes. Therefore para-
magnetism is essential in the proximity of nodal points of the
electronic wave function for a system with n e 2, and it cannot
be removed via CTOCD-PZ procedures, since [γ(0)]-1 diverges.44,62

On the other hand, for n > 2, γ(0)(r) * 0 in general. Therefore,
the CTOCD-PZ approach can practically be used to annihilate
the paramagnetic contribution to magnetizability and nuclear
shielding in a molecule with more than two electrons; that is, it
works for problems to which Rebane’s approach41,42 is
inapplicable.

In addition, as shown in Section 7, for each molecular orbital
in a molecule, the analysis of the nodes of the zero-order electron
density can be used to detect a priori the regions where
paramagnetic vortices can be expected.

5. Computational Procedures

Magnetic susceptibilities and magnetic shielding at the nuclei
have been calculated at three levels of accuracy, coupled
Hartree-Fock (CHF), coupled cluster singles and doubles
(CCSD), and density functional theory (DFT) allowing for the
Keal and Tozer KT3 functional,64,65 implemented in the DAL-
TON package.66 The KT3 functional was found to be the most

DR ) ∑
i)1

n

diR (33)

〈Ψa
(0)|DR|Ψa

(0)〉 ) 〈Ψa
(0)|RR|Ψa

(0)〉 (34)

JB(r) ) Jd
B(r - r') + Jd

d×B(r) ) - e2

2me
B ×

[r - d(r)]γ(0)(r) (35)

�Rδ
Π ) 1

2
εR�γελµδ ∫ r�Idγ

(d×B)λ(r)dµ(r) d3r

) e2

4me
∫ γ(0)(r)[d�(r)r�δRδ - dR(r)rδ] d3r

) e2

4me
〈Ψa

(0)| ∑
i)1

n

(d�r�δRδ - dRrδ)i|Ψa
(0)〉 (36)

EI�(r) ) 1
4πε0

e
r� - RI�

|r - RI|
3

(37)

σRδ
ΠI ) -1

e
εR�γελµδ ∫EI�(r)Idγ

(d×B)λ(r)dµ(r) d3r

) - e

2mec
2 ∫ γ(0)(r)[d�(r)EI�(r)δRδ -

dR(r)EIδ(r)] d3r

) - e

2mec
2
〈a| ∑

i)1

n

(di�EI�
i δRδ - diREIδ

i )|a〉 (38)

σRδ
pI ) e

2mec
2
〈Ψa

(0)| ∑
i)1

n

(ri�EI�
i δRδ - riREIδ

i )|Ψa
(0)〉

(39)

σR�
I ) σR�

ΠI + σR�
dI (40)

Jd
d×B(r) ) Jp

B(r - r') (41)

dγ(r) ) -n
e

[γ(0)(r)]-1εR�γ ∫ dx2 ... dxn ×

[Ψa
B�*(r, x2, ..., xn)p̂RΨa

(0)(r, x2, ..., xn) +

Ψa
(0)*(r, x2, ..., xn)p̂RΨa

B�(r, x2...xn)] (42)
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efficient for calculating shielding constants in a series of small
molecules67 and for studies of hydrogen bonding.68

The common origin (CO) method and four distributed-origin
CTOCD approaches have been applied. The analytic CTOCD-
DZ procedure, providing origin independent nuclear shieldings,
has been described elsewhere.48 A practical variant referred to
as DZ2, based on damping functions and numerical integration,
is more effective and provides good displays of current density
and accurate predictions of magnetic properties with medium
size basis sets.45,69 The CTOCD-DZ2 method, used to describe
current density vector fields in recent applications,70,71 has been
employed to display streamline and modulus maps and stagna-
tion graphs, Figures 1-17.

The basis sets of primitive Gaussian functions and the
polarization functions employed in this study are specified in
the Supporting Information. For consistency, molecular geom-
etries were fully optimized at the HF level using the same basis
sets via the GAUSSIAN package.72 The CHF scheme imple-
mented in the SYSMO code73 was applied within the conven-
tional CO, CTOCD-DZ, CTOCD-DZ2, CTOCD-PZ, and
CTOCD-PZ2 procedures.45,49 The CCSD CTOCD-DZ and DFT-
KT3 CTOCD-DZ have been implemented in DALTON by
Ligabue.66

The predictions of magnetizability of the BeH- system were
found to depend strongly on the molecular geometry, on the
quality of the basis set, and on the level of approximation in
previous works,17,18 showing that both magnitude and sign of
�R� are affected. This has been confirmed in the present work
for a number of extended basis sets. The results reported in
Tables 1 and 2 were obtained from a high quality basis set,
which provides good convergence for a number of other
properties and sum rules, see the Supporting Information. The
CHF predictions for the magnetizability are close to those of
ref 17. The CHF components �| and �⊥ are sizable, but the
average magnetizability nearly vanishes. CCSD CTOCD-DZ
estimates for �av were found to vary in a wide range, from ≈ 0
to ≈ -25 ppm au, depending on the basis set employed. This
trend is similar to that reported in Table 4 of ref 18. Further

investigations are needed to arrive at converged predictions,
taking into account correlation consistent basis sets for beryl-
lium, which lies beyond the scope of the present work.

TABLE 1: Calculated Magnetizabilities in ppm cgs aua

level xx yy zz aV

BeH-

CHF/CTOCD-PZ2 208.75 208.75 -423.18 -1.89
CCSD/CTOCD-DZ 155.68 155.68 -387.81 -25.48

BH
CHF/CTOCD-PZ2 380.64 380.64 -133.48 209.27
CCSD/CTOCD-DZ 278.45 278.45 -127.63 143.09

CH+

CHF/CTOCD-PZ2 555.86 555.86 -76.46 345.09
CCSD/CTOCD-DZ 354.20 354.20 -74.16 211.41

C4H4

CHF/CTOCD-PZ2 -281.57 -240.43 -45.29 -189.10
CCSD/CTOCD-DZ -251.76 -215.47 -53.27 -173.50

C8H8

CHF/CTOCD-PZ2 -584.96 -584.96 497.15 -224.26

a See the Supporting Information for CO, CTOCD-DZ,
CTOCD-PZ, and CTOCD-DZ2 predictions at the CHF level and for
the coordinate systems used. The conversion factor to ppm cgs per
mole is 0.892 389 358 × 10-2 cm3 mol-1. Further conversion to
JT-2 mol-1 is obtained multiplying by 0.1. The conversion factor
to SI units per molecule is 10 × a0

3 ) 0.148 184 709 × 10-29. To
convert the ppm cgs au to SI au, multiply by 1.877 886 47 × 10-2;
further conversion to JT-2 per molecule is obtained multiplying by
7.891 036 60 × 10-29; see ref 93.

TABLE 2: Calculated Nuclear Magnetic Shieldings, in ppma

atom level xx yy zz aV

BeH-

Be CHF/CTOCD-PZ2 -51.76 -51.76 150.88 15.79
DFT/KT3/CTOCD-DZ -28.69 -28.69 153.26 31.96
CCSD/CTOCD-DZ -36.89 -36.89 150.16 25.46

H CHF/CTOCD-PZ2 18.83 18.83 33.01 23.56
DFT/KT3/CTOCD-DZ 19.38 19.38 32.29 23.68
CCSD/CTOCD-DZ 19.85 19.85 32.32 24.01

BH
B CHF/CTOCD-PZ2 -506.65 -506.65 198.89 -271.47

DFT/KT3/CTOCD-DZ -399.10 -399.10 202.30 -198.63
CCSD/CTOCD-DZ -379.25 -379.25 198.45 -186.69

H CHF/CTOCD-PZ2 20.59 20.59 33.93 25.04
DFT/KT3/CTOCD-DZ 18.22 18.22 34.15 23.53
CCSD/CTOCD-DZ 21.42 21.42 33.52 25.45

CH+

C CHF/CTOCD-PZ2 -2030.02 -2030.02 247.08 -1270.99
DFT/KT3/CTOCD-DZ -1267.24 -1267.24 250.31 -761.39
CCSD/CTOCD-DZ -1338.52 -1338.52 246.57 -810.16

H CHF/CTOCD-PZ2 36.34 36.34 30.97 34.55
DFT/KT3/CTOCD-DZ 27.92 27.92 31.18 29.01
CCSD/CTOCD-DZ 30.81 30.81 30.65 30.76

C4H4

C1 CHF/CTOCD-PZ2 -100.68 108.96 127.23 45.17
DFT/KT3/CTOCD-DZ -63.39 95.90 110.89 47.80

H1 CHF/CTOCD-PZ2 21.55 28.98 28.16 26.23
DFT/KT3/CTOCD-DZ 22.01 27.59 28.11 25.90

C8H8

C1 CHF/CTOCD-PZ2 -0.41 26.85 147.44 57.96
DFT/KT3/CTOCD-DZ 2.25 31.34 112.19 48.59

H1 CHF/CTOCD-PZ2 27.89 28.63 29.18 28.57
DFT/KT3/CTOCD-DZ 26.48 28.02 34.15 29.55

a See the Supporting Information for CO, CTOCD-DZ,
CTOCD-PZ, and CTOCD-DZ2 predictions at the CHF level and for
the coordinate systems used.

Figure 1. Stagnation graph of the BeH- molecule in a magnetic field
Bx perpendicular to the z bond axis. Here and in the following Figures
2-5, green (red) stagnation lines denote diatropic (paratropic) flow,
and blue lines indicate saddle-type regime. All the stagnation lines lie
on the xz plane.
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On the other hand, the models developed in this study for
the other compounds are of near HF quality, as proven by
sum rules for gauge invariance and charge conservation and
virtual identity of magnetic properties estimated by different
computational schemes; see the Supporting Information. The
CTOCD-PZ and CTOCD-PZ2 predictions demonstrate that
also for paramagnetic systems BH and CH+ and for π-para-
magnetic planar conjugated hydrocarbons C4H4 and C8H8,
the paramagnetic contribution to magnetic properties can
formally be annihilated, which is not possible via the
Rebane’s method.5,41

Electron correlation is observed to bias the results to a large
extent. For BeH-, the proton shielding is almost unaffected,
whereas the average shielding of the Be nucleus increases. For
BH, there is a sizable decrease of �av, CHF and CCSD CTOCD-
DZ values being respectively ≈209 ppm au and ≈143 ppm au.
A similar trend was also discussed by Ruud et al.18 The KT3
and CCSD CTOCD-DZ computed values for B shielding are
quite close to one another, and much smaller than CHF’s; see
Table 2. Analogous behavior was observed for magnetic
properties of CH+.

A significant decrease of |�av| and ∆� due to electron
correlation was estimated for C4H4.

6. Stagnation Graphs of the Current-Density Field

The basic patterns of a JB field are analyzed via the phase
portrait in the proximity of points at which |JB| vanishes. The
field JB(r) in the neighborhood of a stagnation point (SP) at r0

is described by a truncated Taylor series,

Figure 2. Stagnation graph of the BH molecule in a magnetic field Bx

perpendicular to the z bond axis.

Figure 3. Stagnation graph of the CH+ molecule in a magnetic field
Bx perpendicular to the z bond axis.

Figure 4. Perspective view of the stagnation graph of the C4H4

molecule in a magnetic field Bx perpendicular to the zy molecular plane.

Figure 5. Perspective view of the stagnation graph of the C8H8

molecule in a magnetic field Bz perpendicular to the xy molecular plane.
The branching points of the central stagnation line occur at z ≈ (1.8
bohr. Stagnation loops containing segments of vortex- and saddle-line
are observed about the midpoint of formally single C-C bonds.

Jγ
B(r) ) (rR - r0R)[∇RJγ

B]r)r0
+ 1

2
(rR - r0R)(r� -

r0�)[∇R∇�Jγ
B]r)r0

+ ... (43)
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Reyn74 listed all possible phase portraits in the vicinity of an
SP at r0 in three-dimensional flow, in connection with canonical
forms of the real 3 × 3 Jacobian matrix ∇RJγ

B(r0). The local
regime depends on the eigenvalues of the Jacobian matrix.
Therefore, SPs are denoted via a commonly adopted49,75,76 (rank,
signature) label,77-79 where the rank r is defined as the number
of nonvanishing eigenvalues of the Jacobian matrix and the
signature s is the excess of positive over negative eigenvalues.

An SP is also classified in terms of its index80 ι.81,82 The critical
point identifications discussed here are based on the calculated
eigenvalues of ∇RJγ

B(r0) for the molecules studied.

The SPs may be isolated or form continuous, open or closed,
paths referred to as stagnation lines (SL). The three-dimensional
structure of a current density vector field is described by the
stagnation graph (SG), a topological instrument assembling all

Figure 6. Current density field for BeH- for a magnetic field Bx directed out of the yz plane containing the nuclei, with |B| ) 1 au. Diatropic
(paratropic) flow is clockwise (anticlockwise). The maximum intensity |JB| is 2.20 au, truncated to 0.2 au in the contour map in the center and in
the three-dimensional perspective view on the right. The step between contour levels is 0.02 au.

Figure 7. Current density field for BH for a magnetic field Bx directed out of the yz plane containing the nuclei, with |B| ) 1 au. The maximum
intensity |JB| is 10.68 au, truncated to 0.2 au in the contour map in the center and in the three-dimensional perspective view on the right. The step
between contour levels is 0.02 au. Plotting conventions are the same as in Figure 6.

Figure 8. Current density field for CH+ for a magnetic field Bx directed out of the yz plane containing the nuclei, with |B| ) 1 au. The maximum
intensity |JB| is 33.87 au, truncated to 0.2 au in the contour map in the center and in the three-dimensional perspective view on the right. Plotting
conventions are the same as in Figure 6. The step between contour levels is 0.02 au.
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isolated (3, (1) SPs and (2, 0) SLs, which may be continuous
paths of either vortex (index ι ) +1) or saddle (index ι ) -1)
points.

The SGs provide fundamental information on magnetic
response in relation to the JB field,78 as shown in previous
papers.70,71,83-87 An SG illustrates branchings of an SL at (0, 0)
critical points. The Gomes theorem provides an index conserva-
tion condition, ι0 ) ∑k)1

m ιk, for a line with index ι0 which splits
into m new lines emerging from the branching point.78,77,79,88

The SGs for three isoelectronic first-row hydrides in the
presence of a magnetic field Bx perpendicular to the z bond axis,
BeH- in Figure 1, BH in Figure 2, and CH+ in Figure 3, are
very similar. Each contains three SLs on the zx plane, a red SL
denoting a paratropic axial vortex in the vicinity of the heavier
nucleus, a green SL corresponding to a diatropic vortex beyond
the H nucleus, and a third SL beyond the heavier nucleus, which
is vortical diamagnetic for BH and BeH-, and saddle-type for
CH+. Direction and magnitude of the total current density

induced by Bx are displayed for the yz plot plane in Figures
6-8, which show the paratropic (diatropic) vortex in the vicinity
of the heavier (hydrogen) nucleus.

The SGs of C4H4 and COT, for a magnetic field normal to
the plane of the molecule, are shown in Figures 4 and 5. Both
are characterized by a central red SL, which coincides with a
symmetry axis, corresponding to a paratropic axial vortex
extending for several bohr in the former, and splitting into nine
SLs in the latter at two points equally spaced above and below
the CM at the origin. The pattern of Figure 5 for the antiaromatic
COT is just the opposite of that usually observed for aromatic
Dnh conjugated hydrocarbons, in which an external diatropic
vortex splits in the vicinity of the molecular skeleton, forming
vortices which end up in the regions of C-C bonds.70

Beyond the branching points at z ≈ (1.8 bohr one observes
four red SLs in the SG of COT, corresponding to paratropic
vortices, a green central line which indicates a diatropic vortex,

Figure 9. Current density field for C4H4 for a magnetic field Bx directed out of the zy molecular plane, with |B| ) 1 au. The plot plane lies 1.0 bohr
above that of the nuclei, in a region of nearly maximum π-electron density. The streamline map on the left shows the central paratropic vortex, the
saddle regime above the region of the C-C bonds, and the spiral flow above the C-H bonds. The maximum intensity |JB| is 0.18 au. The step
between contour levels is 0.02 au. Plotting conventions are the same as in Figure 6.

Figure 10. Current density field for C4H4 for a magnetic field Bx directed out of the zy molecular plane, with |B| ) 1 au. The plot plane lies 2.0
bohr above that of the nuclei. The maximum intensity |JB| is 0.05 au. The step between contour levels is 4 × 10-3 au. Plotting conventions are the
same as in Figure 6.

Figure 11. Current density field for flattened C8H8 for a magnetic field Bz directed out of the xy molecular plane, with |B| ) 1 au. The plot plane
lies 1.0 bohr above that of the nuclei, in a region of nearly maximum π-electron density. The streamline map on the left shows the central paratropic
vortex and the spiral flow above the C-H bonds. The maximum intensity |JB| is 0.15 au. The step between contour levels is 1 × 10-2 au. Plotting
conventions are the same as in Figure 6.
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and four blue saddle-type SLs. The splitting process fulfills the
Gomes index-conservation condition,78 1 ) 5 - 4.

Open SLs crossing the molecular plane and bending outward
are observed about the midpoint of the C-C double bonds. They
contain an internal green segment, indicating diatropic vortical
flow, between two saddle SLs. The SLs about the midpoint of
the C-C single bonds form closed loops, a pattern also found
for the C-C bond opposite to the heteroatom in five-membered
heterocyclic molecules for a magnetic field applied perpendicular
to the molecular plane.83 The SGs in in Figures 4 and 5 can be
rotated and magnified for better inspection.84

Current density maps displaying streamlines and moduli on
a few relevant planes selected with the help of the SGs in Figures
4 and 5 are displayed in Figures 9, 10, 11, and 12. These sets
of figures yield nearly complete information on the structure of
the magnetically induced current density field.

7. Wave Function Topology and Paramagnetism in
Closed-Shell Molecules

The current density of an n electron system is characterized
by the presence of vortices in 3n-dimensional configuration
space, as shown in the SGs of Figures 1-5. In three dimensions,
vortices surround nodal lines at the intersection of nodal two-
dimensional manifolds of real zero-order, φi

(0), and imaginary,
φi

(1), first-order orbitals.6,34

The paramagnetism of the BH molecule has been investigated
in connection with the wave function topology in refs 4, 6, and
10. According to the interpretation of Riess,6 it is related to the
intersection of the nodal surfaces of the unperturbed highest-
occupied zero-order molecular orbital, φHOMO

(0) , and of the first-
order φHOMO

(1) , essentially a 2pπ about the B nucleus, which
provide a dominant paratropic contribution. Figure 14 confirms
the analysis of Riess, by showing the zero- and first-order
orbitals, streamlines and modulus of the induced orbital current
density, and the stagnation graph for the total JB field, which
contains a red stagnation line about the B nucleus virtually
coinciding with the blue line denoting the intersection of the
nodal surfaces of φHOMO

(0) and φHOMO
(1) . Inspection of Figures 13

and 15 confirms that the same interpretation in terms of nodal
topology holds for BeH- and CH+, even if the former is less
paramagnetic.

The existence of paramagnetic vortices can, in many cases,
be predicted by determining orbital nodal surfaces a priori via
simple symmetry arguments. In CHF theory, the ith first-order
perturbed molecular orbital φi

(1) is evaluated by the corresponding
unperturbed (occupied) φi

(0) via the equation89

Figure 12. Current density field for flattened C8H8 for a magnetic field Bz directed out of the xy molecular plane, with |B| ) 1 au. The plot plane
lies 2.0 bohr above that of the nuclei. The maximum intensity |JB| is 0.05 au. The step between contour levels is 5 × 10-3 au. Plotting conventions
are the same as in Figure 6.

Figure 13. BeH- anion; top-left, zero-order HOMO φ3
(0) ≡ 3σ; top-

right, first-order MO φ3
(1). Continuous (dashed) lines denote positive

(negative) amplitude. Streamlines and magnitude of the current density
JB induced in the 3σ orbital by the applied magnetic field are displayed
in the center of the figure. Plotting conventions are the same as in Figure
6. Maximum intensity is 2.73 au, truncated at 0.2, and the step between
two contours is 0.02. In the bottom, the blue line indicates the
intersection between the nodal surfaces of φ3

(0) and φ3
(1), and the red

line is the vortical stagnation path in Figure 1.

|φi
(1)〉 ) M(1)F̂(1)|φi

(0)〉 (44)
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where

is the (total symmetric) Hartree-Fock propagator, k denotes a
virtual zero-order orbital, and F̂(1) is the first-order CHF
Hamiltonian.90 Then the symmetry of φi

(1) is evaluated by the
direct-product irreducible representation Γ[φi

(1)] ) Γ[F̂(1)] X
Γ[φi

(0)]. For instance, for C4H4, assuming the D2h symmetry and
the Mulliken conventions,91,92 the irreducible representation of
the π HOMO, with orbital energy -0.2821 hartree, is B2g ≈
Ry, that of F̂(1), for a magnetic field perpendicular to the

molecular yz plane, is B3g ≈ Rx, and then the perturbed orbital
has the symmetry B3g X B2g ) B1g ≈ Rz, the same as that of the
lowest unoccupied molecular orbital (LUMO), with orbital
energy 0.0745 hartree. Therefore, the nodal surfaces of φHOMO

(0)

and φHOMO
(1) are, respectively, the σ(xy) and σ(zx) planes,

intersecting along the x direction perpendicular to the molecular
plane: a paramagnetic vortex is expected to flow about the nodal
x axis. Figure 16 illustrating the results obtained via a Hartree-
Fock calculation confirms the analysis.

Similarly, for flattened COT with D4h symmetry, the repre-
sentation of the π HOMO (-0.2739 hartree) is B1u, that of F̂(1),
for a magnetic field perpendicular to the molecular xy plane, is
A2g ≈ Rz, and then the perturbed orbital has the symmetry

Figure 14. BH molecule; top-left, zero-order HOMO φ3
(0) ≡ 3σ; top-

right, first-order MO φ3
(1). Continuous (dashed) lines denote positive

(negative) amplitude. Streamlines and magnitude of the current density
JB induced in the 3σ orbital by the applied magnetic field are displayed
in the center of the figure. Plotting conventions are the same as in Figure
6. Maximum intensity is 12.08 au, truncated at 0.2, and the step between
two contours is 0.02. In the bottom, the blue line indicates the
intersection between the nodal surfaces of φ3

(0) and φ3
(1), and the red

line is the vortical stagnation path in Figure 2.

M(i) ) ∑
k

VIR

(εi
(0) - εk

(0))-1|φk
(0)〉〈φk

(0)| (45)

Figure 15. CH+ cation; top-left, zero-order HOMO φ3
(0) ≡ 3σ; top-

right, first-order MO φ3
(1). Continuous (dashed) lines denote positive

(negative) amplitude. Streamlines and magnitude of the current density
JB induced in the 3σ orbital by the applied magnetic field are displayed
in the center of the figure. Plotting conventions are the same as in Figure
6. Maximum intensity is 35.86 au, truncated at 0.2, and the step between
two contours is 0.02. In the bottom, the blue line indicates the
intersection between the nodal surfaces of φ3

(0) and φ3
(1), and the red

line is the vortical stagnation path of the total JB in Figure 3.
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A2g X B1u ) B2u, the same as the LUMO’s (0.0300 hartree).
The z axis perpendicular to the molecular plane lying at the
intersection of several nodal planes is a vortical axis. Inspection
of Figure 17 confirms the group-theoretical considerations.

8. Conclusions

A preliminary aim of this study is to show that, for any system
of electrons, the approach employing a continuous transforma-
tion of the origin of the current density-paramagnetic zero44,45,62

can be employed to formally eliminate the paramagnetic part
of magnetizability and nuclear magnetic shielding considered
in quantum mechanical Rayleigh-Schrödinger perturbation
theory.27,47

Whereas the Rebane’s annihilation procedure5,41,42 can be applied
only to systems with less than three electrons with nodeless state
functions, the CTOCD-PZ method works for neutral molecules
and molecular ions with more than two electrons, irrespective of
the nodal structure of the wave function. The paramagnetic
contribution to magnetic properties is efficiently killed also in
paramagnetic closed-shell hydrides, for example, BH and CH+,
and in planar unsaturated hydrocarbons exhibiting π paramagnet-
ism, for example, C4H4 and flattened C8H8. The total magnetiz-
ability of these systems can be written as a sum of two formally
diamagnetic Langevin-Pauli terms, that is, as an expectation value
over the unperturbed electronic wave function.

Figure 16. C4H4 molecule: zero-order HOMO φ7
(0), with B2g symmetry; top-right: first-order MO φ7

(1), with B1g symmetry. Continuous (dashed)
lines denote positive (negative) amplitude. Streamlines and magnitude of the current density JB induced in the HOMO by the applied magnetic field
on a plane 1.0 bohr above that of the molecules are displayed in the center of the figure. The corresponding three-dimensional perspective view is
given in the bottom-left figure. Plotting conventions are the same as in Figure 6. Maximum intensity is 0.14 au, and the step between two contours
is 0.01. In the bottom, the red line indicates the intersection between the nodal surfaces of φ7

(0) and φ7
(1). It coincides with the central vortical

stagnation path of the total JB in Figure 4.
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Therefore, according to Riess,6 a system of electrons can
properly be called diamagnetic (paramagnetic) if the total
energy term -(1/2)�R�BRB� is positive (negative), recalling
that the diamagnetic �R�

d and paramagnetic �R�
p contributions

to the sum �R� ) �R�
d + �R�

p are not uniquely defined, as they
interconvert in a gauge transformation. An analogous result
was obtained for the magnetic shielding at nucleus I, σR�

I )
σR�

Id + σR�
Ip . On the other hand, the part of electronic quantum

mechanical current density customarily referred to as “para-
magnetic” may have any direction, providing contributions
of either sign to magnetic properties from different domains
of the JB(r) field. Therefore it may more properly be called
“non-Larmor”, to avoid misinterpretations pointed out by
Monaco and Zanasi.39

The second scope of the present research was to interpret
the induced paramagnetism of the isoelectronic series of BeH-,
BH, and CH+ systems, and of π-paramagnetic molecules C4H4

and C8H8. We have shown that the paramagnetic response is
related to the topology of the electronic wave function. In the
systems studied, paratropic vortices occur at the intersection of
nodal surfaces of the zero-order HOMO with the nodal surface
of the corresponding first-order perturbed orbital. The para-
magnetism induced in the HOMO by a field applied at right
angles to the bond axis dominates the other orbital contributions
in BH and CH+ and it bias of the total values of magnetic
properties in BeH-, C4H4, and C8H8.

Simple group-theoretical methods are sufficient to predict the
occurrence of paratropic currents about the Cn symmetry axis

Figure 17. C8H8 molecule: zero-order HOMO φ16
(0), with B1u symmetry; top-right, first-order MO φ16

(1), with B2u symmetry. Continuous (dashed)
lines denote positive (negative) amplitude. Streamlines and magnitude of the current density JB induced in the HOMO by the applied magnetic field
on a plane 1.0 bohr above that of the molecules are displayed in the center of the figure. The corresponding three-dimensional perspective view is
given in the bottom-left figure. Plotting conventions are the same as in Figure 6. Maximum intensity is 0.15 au, and the step between two contours
is 0.01. In the bottom, the red line indicates the intersection between the nodal surfaces of φ16

(0) and φ16
(1). It coincides with the central vortical

stagnation path of the total JB in Figure 5.
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of a Dnh conjugated hydrocarbon in the presence of a magnetic
field normal to the σh plane. Compact spatial models of the
magnetic-field induced quantum mechanical current density JB,
provided by stagnation graphs assembling isolated points and
continuous sets of points at which the modulus |JB| vanishes,
confirm the importance of the group-theoretical analysis in
systems endowed with sufficient symmetry and the practicality
of the CTOCD-DZ and -PZ approaches.

Electron correlation effects estimated via KT3 DFT and
CCSD approaches yield significant contributions to calculated
magnetic properties. In particular, they reduce the induced
paramagnetism of BH, CH+, and C4H4 predicted at the CHF
level. This possibly implies that also the nodal structure of the
electronic wave function is affected by electron correlation,
changing some features of the induced current density field and
of the stagnation graph.
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